Update to sagemath 8.7.

- Drop upstreamed -giac patch.
- Add -sagetex patch to fix a python indentation error.
- Add -rubiks patch to fix compilation of the rubiks library.
- Add -random patch to fix a non-random random bit generator.
- Drop pip3 workaround; the binary is now named just pip again.
This commit is contained in:
Jerry James 2019-04-28 15:12:00 -06:00
parent b6408b9313
commit 05337076b6
21 changed files with 898 additions and 442 deletions

View file

@ -1,5 +1,6 @@
--- src/sage/combinat/crystals/alcove_path.py.orig 2019-01-14 17:16:01.000000000 -0700
+++ src/sage/combinat/crystals/alcove_path.py 2019-02-07 15:43:21.188614487 -0700
diff -up src/sage/combinat/crystals/alcove_path.py.orig src/sage/combinat/crystals/alcove_path.py
--- src/sage/combinat/crystals/alcove_path.py.orig 2019-03-23 16:20:34.000000000 -0600
+++ src/sage/combinat/crystals/alcove_path.py 2019-04-08 13:33:18.101386015 -0600
@@ -383,7 +383,7 @@ class CrystalOfAlcovePaths(UniqueReprese
One can compute all vertices of the crystal by finding all the
@ -9,39 +10,9 @@
search algorithm.
.. WARNING::
--- src/sage/combinat/crystals/kirillov_reshetikhin.py.orig 2019-01-14 17:16:01.000000000 -0700
+++ src/sage/combinat/crystals/kirillov_reshetikhin.py 2019-02-07 15:44:37.612978369 -0700
@@ -3443,7 +3443,7 @@ class CrystalOfTableaux_E7(CrystalOfTabl
<sage.combinat.crystals.kirillov_reshetikhin.KR_type_E7>` `B^{7,s}`.
"""
def module_generator(self, shape):
- """
+ r"""
Return the module generator of ``self`` with shape ``shape``.
.. NOTE::
@@ -3496,7 +3496,7 @@ class KR_type_E7(KirillovReshetikhinGene
@cached_method
def A7_decomposition(self):
- """
+ r"""
Return the decomposition of ``self`` into `A_7` highest
weight crystals.
--- src/sage/groups/perm_gps/permgroup_named.py.orig 2019-01-14 17:16:02.000000000 -0700
+++ src/sage/groups/perm_gps/permgroup_named.py 2019-02-07 15:51:38.530055246 -0700
@@ -3027,7 +3027,7 @@ class SuzukiGroup(PermutationGroup_uniqu
return "The Suzuki group over %s" % self.base_ring()
class ComplexReflectionGroup(PermutationGroup_unique):
- """
+ r"""
A finite complex reflection group as a permutation group.
We can realize `G(m,1,n)` as `m` copies of the symmetric group
--- src/sage/homology/homology_group.py.orig 2019-01-14 17:16:03.000000000 -0700
+++ src/sage/homology/homology_group.py 2019-02-07 15:43:21.197614413 -0700
diff -up src/sage/homology/homology_group.py.orig src/sage/homology/homology_group.py
--- src/sage/homology/homology_group.py.orig 2019-03-23 16:20:40.000000000 -0600
+++ src/sage/homology/homology_group.py 2019-04-08 13:33:22.436307576 -0600
@@ -109,7 +109,7 @@ class HomologyGroup_class(AdditiveAbelia
sage: from sage.homology.homology_group import HomologyGroup
sage: H = HomologyGroup(7, ZZ, [4,4,4,4,4,7,7])
@ -51,14 +22,36 @@
sage: latex(HomologyGroup(6, ZZ))
\ZZ^{6}
"""
--- src/sage/rings/number_field/number_field.py.orig 2019-01-14 17:16:04.000000000 -0700
+++ src/sage/rings/number_field/number_field.py 2019-02-07 15:43:21.220614222 -0700
@@ -6622,7 +6622,7 @@ class NumberField_generic(WithEqualityBy
return U
diff -up src/sage/rings/function_field/differential.py.orig src/sage/rings/function_field/differential.py
--- src/sage/rings/function_field/differential.py.orig 2019-03-23 16:20:42.000000000 -0600
+++ src/sage/rings/function_field/differential.py 2019-04-09 10:42:43.202792022 -0600
@@ -360,7 +360,7 @@ class FunctionFieldDifferential_global(F
return to_R(c)
def S_unit_solutions(self, S=[], prec=106, include_exponents=False, include_bound=False, proof=None):
def cartier(self):
- """
+ r"""
Return all solutions to the S-unit equation ``x + y = 1`` over K.
Return the image of the differential by the Cartier operator.
INPUT:
The Cartier operator operates on differentials. Let `x` be a separating
diff -up src/sage/rings/function_field/divisor.py.orig src/sage/rings/function_field/divisor.py
--- src/sage/rings/function_field/divisor.py.orig 2019-03-23 16:20:42.000000000 -0600
+++ src/sage/rings/function_field/divisor.py 2019-04-09 10:42:22.061135616 -0600
@@ -531,7 +531,7 @@ class FunctionFieldDivisor(ModuleElement
return basis, coordinates_func
def basis_differential_space(self):
- """
+ r"""
Return a basis of the space of differentials `\Omega(D)`
for the divisor `D`.
@@ -554,7 +554,7 @@ class FunctionFieldDivisor(ModuleElement
return [W.element_class(W, f) for f in fbasis]
def differential_space(self):
- """
+ r"""
Return the vector space of the differential space `\Omega(D)` of the divisor `D`.
OUTPUT: