mirror of
https://src.fedoraproject.org/rpms/sagemath.git
synced 2025-04-22 11:45:56 -04:00
More adaptations to NTL 9.3.
This commit is contained in:
parent
7c9edb5212
commit
fa822a3b47
1 changed files with 23 additions and 23 deletions
|
@ -44,13 +44,13 @@
|
|||
|
||||
/* This is called once for every single module that links in stdsage */
|
||||
--- ./src/sage/rings/bernmm/bernmm-test.cpp.orig 2015-02-16 17:15:12.000000000 -0700
|
||||
+++ ./src/sage/rings/bernmm/bernmm-test.cpp 2015-05-07 21:39:58.565251320 -0600
|
||||
+++ ./src/sage/rings/bernmm/bernmm-test.cpp 2015-09-26 09:19:00.830399741 -0600
|
||||
@@ -70,7 +70,7 @@ void bern_naive(mpq_t* res, long n)
|
||||
*/
|
||||
int testcase__bern_modp_powg(long p, long k, mpq_t b)
|
||||
{
|
||||
- double pinv = 1 / ((double) p);
|
||||
+ wide_double pinv = wide_double(1) / wide_double(p);
|
||||
+ mulmod_t pinv = PrepMulMod(p);
|
||||
|
||||
// compute B_k mod p using _bern_modp_powg()
|
||||
long x = _bern_modp_powg(p, pinv, k);
|
||||
|
@ -59,18 +59,18 @@
|
|||
int testcase__bern_modp_pow2(long p, long k)
|
||||
{
|
||||
- double pinv = 1 / ((double) p);
|
||||
+ wide_double pinv = wide_double(1) / wide_double(p);
|
||||
+ mulmod_t pinv = PrepMulMod(p);
|
||||
|
||||
if (PowerMod(2, k, p, pinv) == 1)
|
||||
return 1;
|
||||
--- ./src/sage/rings/bernmm/bern_modp.cpp.orig 2015-02-16 17:15:12.000000000 -0700
|
||||
+++ ./src/sage/rings/bernmm/bern_modp.cpp 2015-05-07 20:17:37.680381004 -0600
|
||||
+++ ./src/sage/rings/bernmm/bern_modp.cpp 2015-09-26 14:15:34.862360481 -0600
|
||||
@@ -43,14 +43,14 @@ namespace bernmm {
|
||||
pinv = 1 / ((double) p)
|
||||
g = a multiplicative generator of GF(p), in [0, p)
|
||||
*/
|
||||
-long bernsum_powg(long p, double pinv, long k, long g)
|
||||
+long bernsum_powg(long p, wide_double pinv, long k, long g)
|
||||
+long bernsum_powg(long p, mulmod_t pinv, long k, long g)
|
||||
{
|
||||
long half_gm1 = (g + ((g & 1) ? 0 : p) - 1) / 2; // (g-1)/2 mod p
|
||||
long g_to_jm1 = 1;
|
||||
|
@ -78,7 +78,7 @@
|
|||
long g_to_km1_to_j = g_to_km1;
|
||||
long sum = 0;
|
||||
- double g_pinv = ((double) g) / ((double) p);
|
||||
+ wide_double g_pinv = wide_double(g) / wide_double(p);
|
||||
+ muldivrem_t g_pinv = PrepMulDivRem(g, p);
|
||||
mulmod_precon_t g_to_km1_pinv = PrepMulModPrecon(g_to_km1, p, pinv);
|
||||
|
||||
for (long j = 1; j <= (p-1)/2; j++)
|
||||
|
@ -87,7 +87,7 @@
|
|||
#endif
|
||||
|
||||
-long bernsum_pow2(long p, double pinv, long k, long g, long n)
|
||||
+long bernsum_pow2(long p, wide_double pinv, long k, long g, long n)
|
||||
+long bernsum_pow2(long p, mulmod_t pinv, long k, long g, long n)
|
||||
{
|
||||
// In the main summation loop we accumulate data into the _tables_ array;
|
||||
// tables[y][z] contributes to the final answer with a weight of
|
||||
|
@ -96,7 +96,7 @@
|
|||
something is different from bernsum_pow2())
|
||||
*/
|
||||
-long bernsum_pow2_redc(long p, double pinv, long k, long g, long n)
|
||||
+long bernsum_pow2_redc(long p, wide_double pinv, long k, long g, long n)
|
||||
+long bernsum_pow2_redc(long p, mulmod_t pinv, long k, long g, long n)
|
||||
{
|
||||
long pinv2 = PrepRedc(p);
|
||||
long F = (1L << (ULONG_BITS/2)) % p;
|
||||
|
@ -105,7 +105,7 @@
|
|||
Algorithm: uses bernsum_powg() to compute the main sum.
|
||||
*/
|
||||
-long _bern_modp_powg(long p, double pinv, long k)
|
||||
+long _bern_modp_powg(long p, wide_double pinv, long k)
|
||||
+long _bern_modp_powg(long p, mulmod_t pinv, long k)
|
||||
{
|
||||
Factorisation F(p-1);
|
||||
long g = primitive_root(p, pinv, F);
|
||||
|
@ -114,7 +114,7 @@
|
|||
enough) to compute the main sum.
|
||||
*/
|
||||
-long _bern_modp_pow2(long p, double pinv, long k)
|
||||
+long _bern_modp_pow2(long p, wide_double pinv, long k)
|
||||
+long _bern_modp_pow2(long p, mulmod_t pinv, long k)
|
||||
{
|
||||
Factorisation F(p-1);
|
||||
long g = primitive_root(p, pinv, F);
|
||||
|
@ -123,7 +123,7 @@
|
|||
pinv = 1 / ((double) p)
|
||||
*/
|
||||
-long _bern_modp(long p, double pinv, long k)
|
||||
+long _bern_modp(long p, wide_double pinv, long k)
|
||||
+long _bern_modp(long p, mulmod_t pinv, long k)
|
||||
{
|
||||
if (PowerMod(2, k, p, pinv) != 1)
|
||||
// 2^k != 1 mod p, so we use the faster version
|
||||
|
@ -132,12 +132,12 @@
|
|||
return -1;
|
||||
|
||||
- double pinv = 1 / ((double) p);
|
||||
+ wide_double pinv = wide_double(1) / wide_double (p);
|
||||
+ mulmod_t pinv = PrepMulMod(p);
|
||||
long x = _bern_modp(p, pinv, m); // = B_m/m mod p
|
||||
return MulMod(x, k, p, pinv);
|
||||
}
|
||||
--- ./src/sage/rings/bernmm/bern_modp.h.orig 2015-02-16 17:15:12.000000000 -0700
|
||||
+++ ./src/sage/rings/bernmm/bern_modp.h 2015-05-09 08:06:39.732529882 -0600
|
||||
+++ ./src/sage/rings/bernmm/bern_modp.h 2015-09-26 09:19:28.365229754 -0600
|
||||
@@ -12,6 +12,7 @@
|
||||
#ifndef BERNMM_BERN_MODP_H
|
||||
#define BERNMM_BERN_MODP_H
|
||||
|
@ -152,19 +152,19 @@
|
|||
*/
|
||||
-long _bern_modp_powg(long p, double pinv, long k);
|
||||
-long _bern_modp_pow2(long p, double pinv, long k);
|
||||
+long _bern_modp_powg(long p, NTL::wide_double pinv, long k);
|
||||
+long _bern_modp_pow2(long p, NTL::wide_double pinv, long k);
|
||||
+long _bern_modp_powg(long p, NTL::mulmod_t pinv, long k);
|
||||
+long _bern_modp_pow2(long p, NTL::mulmod_t pinv, long k);
|
||||
|
||||
|
||||
};
|
||||
--- ./src/sage/rings/bernmm/bern_modp_util.cpp.orig 2015-02-16 17:15:12.000000000 -0700
|
||||
+++ ./src/sage/rings/bernmm/bern_modp_util.cpp 2015-05-07 21:38:06.662182003 -0600
|
||||
+++ ./src/sage/rings/bernmm/bern_modp_util.cpp 2015-09-26 09:19:57.474935651 -0600
|
||||
@@ -20,7 +20,7 @@ NTL_CLIENT;
|
||||
namespace bernmm {
|
||||
|
||||
|
||||
-long PowerMod(long a, long ee, long n, double ninv)
|
||||
+long PowerMod(long a, long ee, long n, wide_double ninv)
|
||||
+long PowerMod(long a, long ee, long n, mulmod_t ninv)
|
||||
{
|
||||
long x, y;
|
||||
|
||||
|
@ -173,7 +173,7 @@
|
|||
|
||||
|
||||
-long order(long x, long p, double pinv, const Factorisation& F)
|
||||
+long order(long x, long p, wide_double pinv, const Factorisation& F)
|
||||
+long order(long x, long p, mulmod_t pinv, const Factorisation& F)
|
||||
{
|
||||
// in the loop below, m is always some multiple of the order of x
|
||||
long m = p - 1;
|
||||
|
@ -182,12 +182,12 @@
|
|||
|
||||
|
||||
-long primitive_root(long p, double pinv, const Factorisation& F)
|
||||
+long primitive_root(long p, wide_double pinv, const Factorisation& F)
|
||||
+long primitive_root(long p, mulmod_t pinv, const Factorisation& F)
|
||||
{
|
||||
if (p == 2)
|
||||
return 1;
|
||||
--- ./src/sage/rings/bernmm/bern_modp_util.h.orig 2015-02-16 17:15:12.000000000 -0700
|
||||
+++ ./src/sage/rings/bernmm/bern_modp_util.h 2015-05-09 08:58:22.618458475 -0600
|
||||
+++ ./src/sage/rings/bernmm/bern_modp_util.h 2015-09-26 09:20:26.423623021 -0600
|
||||
@@ -17,6 +17,7 @@
|
||||
#include <vector>
|
||||
#include <cassert>
|
||||
|
@ -201,7 +201,7 @@
|
|||
(Implementation is adapted from ZZ.c in NTL 5.4.1.)
|
||||
*/
|
||||
-long PowerMod(long a, long ee, long n, double ninv);
|
||||
+long PowerMod(long a, long ee, long n, NTL::wide_double ninv);
|
||||
+long PowerMod(long a, long ee, long n, NTL::mulmod_t ninv);
|
||||
|
||||
|
||||
/*
|
||||
|
@ -210,14 +210,14 @@
|
|||
Computes order of x mod p, given the factorisation F of p-1.
|
||||
*/
|
||||
-long order(long x, long p, double pinv, const Factorisation& F);
|
||||
+long order(long x, long p, NTL::wide_double pinv, const Factorisation& F);
|
||||
+long order(long x, long p, NTL::mulmod_t pinv, const Factorisation& F);
|
||||
|
||||
|
||||
/*
|
||||
Finds the smallest primitive root mod p, given the factorisation F of p-1.
|
||||
*/
|
||||
-long primitive_root(long p, double pinv, const Factorisation& F);
|
||||
+long primitive_root(long p, NTL::wide_double pinv, const Factorisation& F);
|
||||
+long primitive_root(long p, NTL::mulmod_t pinv, const Factorisation& F);
|
||||
|
||||
|
||||
}; // end namespace
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue