diff -up src/sage/numerical/backends/cvxopt_backend.pyx.orig src/sage/numerical/backends/cvxopt_backend.pyx --- src/sage/numerical/backends/cvxopt_backend.pyx.orig 2021-05-09 16:00:11.000000000 -0600 +++ src/sage/numerical/backends/cvxopt_backend.pyx 2021-05-28 12:05:47.551650940 -0600 @@ -550,7 +550,7 @@ cdef class CVXOPTBackend(GenericBackend) self.answer = solvers.lp(c,G,h) #possible outcomes - if self.answer['status'] == 'optimized': + if self.answer['status'] in ['optimized', 'optimal']: pass elif self.answer['status'] == 'primal infeasible': raise MIPSolverException("CVXOPT: primal infeasible") diff -up src/sage/numerical/backends/cvxopt_sdp_backend.pyx.orig src/sage/numerical/backends/cvxopt_sdp_backend.pyx --- src/sage/numerical/backends/cvxopt_sdp_backend.pyx.orig 2021-05-09 16:00:11.000000000 -0600 +++ src/sage/numerical/backends/cvxopt_sdp_backend.pyx 2021-05-28 12:05:47.552650940 -0600 @@ -150,7 +150,7 @@ cdef class CVXOPTSDPBackend(MatrixSDPBac self.answer = solvers.sdp(c,Gs=G_matrix,hs=h_matrix) #possible outcomes - if self.answer['status'] == 'optimized': + if self.answer['status'] in ['optimized', 'optimal']: pass elif self.answer['status'] == 'primal infeasible': raise SDPSolverException("CVXOPT: primal infeasible")