diff -up src/sage/combinat/crystals/alcove_path.py.orig src/sage/combinat/crystals/alcove_path.py --- src/sage/combinat/crystals/alcove_path.py.orig 2019-03-23 16:20:34.000000000 -0600 +++ src/sage/combinat/crystals/alcove_path.py 2019-04-08 13:33:18.101386015 -0600 @@ -383,7 +383,7 @@ class CrystalOfAlcovePaths(UniqueReprese One can compute all vertices of the crystal by finding all the admissible subsets of the `\lambda`-chain (see method - is_admissible, for definition). We use the breath first + is_admissible, for definition). We use the breadth first search algorithm. .. WARNING:: diff -up src/sage/homology/homology_group.py.orig src/sage/homology/homology_group.py --- src/sage/homology/homology_group.py.orig 2019-03-23 16:20:40.000000000 -0600 +++ src/sage/homology/homology_group.py 2019-04-08 13:33:22.436307576 -0600 @@ -109,7 +109,7 @@ class HomologyGroup_class(AdditiveAbelia sage: from sage.homology.homology_group import HomologyGroup sage: H = HomologyGroup(7, ZZ, [4,4,4,4,4,7,7]) sage: H._latex_() - 'C_{4}^{5} \\times C_{7} \\times C_{7}' + 'C_{4}^{5} \times C_{7} \times C_{7}' sage: latex(HomologyGroup(6, ZZ)) \ZZ^{6} """ diff -up src/sage/rings/function_field/differential.py.orig src/sage/rings/function_field/differential.py --- src/sage/rings/function_field/differential.py.orig 2019-03-23 16:20:42.000000000 -0600 +++ src/sage/rings/function_field/differential.py 2019-04-09 10:42:43.202792022 -0600 @@ -360,7 +360,7 @@ class FunctionFieldDifferential_global(F return to_R(c) def cartier(self): - """ + r""" Return the image of the differential by the Cartier operator. The Cartier operator operates on differentials. Let `x` be a separating diff -up src/sage/rings/function_field/divisor.py.orig src/sage/rings/function_field/divisor.py --- src/sage/rings/function_field/divisor.py.orig 2019-03-23 16:20:42.000000000 -0600 +++ src/sage/rings/function_field/divisor.py 2019-04-09 10:42:22.061135616 -0600 @@ -531,7 +531,7 @@ class FunctionFieldDivisor(ModuleElement return basis, coordinates_func def basis_differential_space(self): - """ + r""" Return a basis of the space of differentials `\Omega(D)` for the divisor `D`. @@ -554,7 +554,7 @@ class FunctionFieldDivisor(ModuleElement return [W.element_class(W, f) for f in fbasis] def differential_space(self): - """ + r""" Return the vector space of the differential space `\Omega(D)` of the divisor `D`. OUTPUT: