diff -up src/sage/combinat/crystals/alcove_path.py.orig src/sage/combinat/crystals/alcove_path.py --- src/sage/combinat/crystals/alcove_path.py.orig 2018-12-22 16:37:07.000000000 -0700 +++ src/sage/combinat/crystals/alcove_path.py 2019-01-04 11:16:55.320833974 -0700 @@ -383,7 +383,7 @@ class CrystalOfAlcovePaths(UniqueReprese One can compute all vertices of the crystal by finding all the admissible subsets of the `\lambda`-chain (see method - is_admissible, for definition). We use the breath first + is_admissible, for definition). We use the breadth first search algorithm. .. WARNING:: diff -up src/sage/homology/homology_group.py.orig src/sage/homology/homology_group.py --- src/sage/homology/homology_group.py.orig 2018-12-22 16:37:08.000000000 -0700 +++ src/sage/homology/homology_group.py 2019-01-04 11:17:37.136047323 -0700 @@ -109,7 +109,7 @@ class HomologyGroup_class(AdditiveAbelia sage: from sage.homology.homology_group import HomologyGroup sage: H = HomologyGroup(7, ZZ, [4,4,4,4,4,7,7]) sage: H._latex_() - 'C_{4}^{5} \\times C_{7} \\times C_{7}' + 'C_{4}^{5} \times C_{7} \times C_{7}' sage: latex(HomologyGroup(6, ZZ)) \ZZ^{6} """ diff -up src/sage/rings/number_field/number_field.py.orig src/sage/rings/number_field/number_field.py --- src/sage/rings/number_field/number_field.py.orig 2018-12-22 16:37:10.000000000 -0700 +++ src/sage/rings/number_field/number_field.py 2019-01-08 16:25:39.730547708 -0700 @@ -6613,7 +6613,7 @@ class NumberField_generic(WithEqualityBy return U def S_unit_solutions(self, S=[], prec=106, include_exponents=False, include_bound=False, proof=None): - """ + r""" Return all solutions to the S-unit equation ``x + y = 1`` over K. INPUT: