--- src/sage/combinat/crystals/alcove_path.py.orig 2019-01-14 17:16:01.000000000 -0700 +++ src/sage/combinat/crystals/alcove_path.py 2019-02-07 15:43:21.188614487 -0700 @@ -383,7 +383,7 @@ class CrystalOfAlcovePaths(UniqueReprese One can compute all vertices of the crystal by finding all the admissible subsets of the `\lambda`-chain (see method - is_admissible, for definition). We use the breath first + is_admissible, for definition). We use the breadth first search algorithm. .. WARNING:: --- src/sage/combinat/crystals/kirillov_reshetikhin.py.orig 2019-01-14 17:16:01.000000000 -0700 +++ src/sage/combinat/crystals/kirillov_reshetikhin.py 2019-02-07 15:44:37.612978369 -0700 @@ -3443,7 +3443,7 @@ class CrystalOfTableaux_E7(CrystalOfTabl ` `B^{7,s}`. """ def module_generator(self, shape): - """ + r""" Return the module generator of ``self`` with shape ``shape``. .. NOTE:: @@ -3496,7 +3496,7 @@ class KR_type_E7(KirillovReshetikhinGene @cached_method def A7_decomposition(self): - """ + r""" Return the decomposition of ``self`` into `A_7` highest weight crystals. --- src/sage/groups/perm_gps/permgroup_named.py.orig 2019-01-14 17:16:02.000000000 -0700 +++ src/sage/groups/perm_gps/permgroup_named.py 2019-02-07 15:51:38.530055246 -0700 @@ -3027,7 +3027,7 @@ class SuzukiGroup(PermutationGroup_uniqu return "The Suzuki group over %s" % self.base_ring() class ComplexReflectionGroup(PermutationGroup_unique): - """ + r""" A finite complex reflection group as a permutation group. We can realize `G(m,1,n)` as `m` copies of the symmetric group --- src/sage/homology/homology_group.py.orig 2019-01-14 17:16:03.000000000 -0700 +++ src/sage/homology/homology_group.py 2019-02-07 15:43:21.197614413 -0700 @@ -109,7 +109,7 @@ class HomologyGroup_class(AdditiveAbelia sage: from sage.homology.homology_group import HomologyGroup sage: H = HomologyGroup(7, ZZ, [4,4,4,4,4,7,7]) sage: H._latex_() - 'C_{4}^{5} \\times C_{7} \\times C_{7}' + 'C_{4}^{5} \times C_{7} \times C_{7}' sage: latex(HomologyGroup(6, ZZ)) \ZZ^{6} """ --- src/sage/rings/number_field/number_field.py.orig 2019-01-14 17:16:04.000000000 -0700 +++ src/sage/rings/number_field/number_field.py 2019-02-07 15:43:21.220614222 -0700 @@ -6622,7 +6622,7 @@ class NumberField_generic(WithEqualityBy return U def S_unit_solutions(self, S=[], prec=106, include_exponents=False, include_bound=False, proof=None): - """ + r""" Return all solutions to the S-unit equation ``x + y = 1`` over K. INPUT: