mirror of
https://src.fedoraproject.org/rpms/sagemath.git
synced 2025-04-18 10:19:03 -04:00
Also: - Install an SVG icon instead of a fixed size (128x128) icon. - Require hicolor-icon-theme since we install an icon. - Drop obsolete Obsolete.
64 lines
2.8 KiB
Diff
64 lines
2.8 KiB
Diff
--- src/sage/combinat/crystals/alcove_path.py.orig 2019-01-14 17:16:01.000000000 -0700
|
|
+++ src/sage/combinat/crystals/alcove_path.py 2019-02-07 15:43:21.188614487 -0700
|
|
@@ -383,7 +383,7 @@ class CrystalOfAlcovePaths(UniqueReprese
|
|
|
|
One can compute all vertices of the crystal by finding all the
|
|
admissible subsets of the `\lambda`-chain (see method
|
|
- is_admissible, for definition). We use the breath first
|
|
+ is_admissible, for definition). We use the breadth first
|
|
search algorithm.
|
|
|
|
.. WARNING::
|
|
--- src/sage/combinat/crystals/kirillov_reshetikhin.py.orig 2019-01-14 17:16:01.000000000 -0700
|
|
+++ src/sage/combinat/crystals/kirillov_reshetikhin.py 2019-02-07 15:44:37.612978369 -0700
|
|
@@ -3443,7 +3443,7 @@ class CrystalOfTableaux_E7(CrystalOfTabl
|
|
<sage.combinat.crystals.kirillov_reshetikhin.KR_type_E7>` `B^{7,s}`.
|
|
"""
|
|
def module_generator(self, shape):
|
|
- """
|
|
+ r"""
|
|
Return the module generator of ``self`` with shape ``shape``.
|
|
|
|
.. NOTE::
|
|
@@ -3496,7 +3496,7 @@ class KR_type_E7(KirillovReshetikhinGene
|
|
|
|
@cached_method
|
|
def A7_decomposition(self):
|
|
- """
|
|
+ r"""
|
|
Return the decomposition of ``self`` into `A_7` highest
|
|
weight crystals.
|
|
|
|
--- src/sage/groups/perm_gps/permgroup_named.py.orig 2019-01-14 17:16:02.000000000 -0700
|
|
+++ src/sage/groups/perm_gps/permgroup_named.py 2019-02-07 15:51:38.530055246 -0700
|
|
@@ -3027,7 +3027,7 @@ class SuzukiGroup(PermutationGroup_uniqu
|
|
return "The Suzuki group over %s" % self.base_ring()
|
|
|
|
class ComplexReflectionGroup(PermutationGroup_unique):
|
|
- """
|
|
+ r"""
|
|
A finite complex reflection group as a permutation group.
|
|
|
|
We can realize `G(m,1,n)` as `m` copies of the symmetric group
|
|
--- src/sage/homology/homology_group.py.orig 2019-01-14 17:16:03.000000000 -0700
|
|
+++ src/sage/homology/homology_group.py 2019-02-07 15:43:21.197614413 -0700
|
|
@@ -109,7 +109,7 @@ class HomologyGroup_class(AdditiveAbelia
|
|
sage: from sage.homology.homology_group import HomologyGroup
|
|
sage: H = HomologyGroup(7, ZZ, [4,4,4,4,4,7,7])
|
|
sage: H._latex_()
|
|
- 'C_{4}^{5} \\times C_{7} \\times C_{7}'
|
|
+ 'C_{4}^{5} \times C_{7} \times C_{7}'
|
|
sage: latex(HomologyGroup(6, ZZ))
|
|
\ZZ^{6}
|
|
"""
|
|
--- src/sage/rings/number_field/number_field.py.orig 2019-01-14 17:16:04.000000000 -0700
|
|
+++ src/sage/rings/number_field/number_field.py 2019-02-07 15:43:21.220614222 -0700
|
|
@@ -6622,7 +6622,7 @@ class NumberField_generic(WithEqualityBy
|
|
return U
|
|
|
|
def S_unit_solutions(self, S=[], prec=106, include_exponents=False, include_bound=False, proof=None):
|
|
- """
|
|
+ r"""
|
|
Return all solutions to the S-unit equation ``x + y = 1`` over K.
|
|
|
|
INPUT:
|